Korean Journal of Psychology : General

理쒓렐샇 寃깋

Korean Journal of Psychology : General - Vol. 40 , No. 3

[ Article ]
The Korean Journal of Psychology: General - Vol. 40, No. 3, pp.329-349
ISSN: 1229-067X (Print)
Print publication date 25 Sep 2021
Received 22 Mar 2021 Revised 27 Jul 2021 Accepted 07 Sep 2021
DOI: https://doi.org/10.22257/kjp.2021.9.40.3.329

난독증 연구를 통해서 본 시각 시스템과 읽기 처리 과정의 관계
주성준

On the relationship between visual system in the reading process: learning from dyslexia research
Sung Jun Joo
Pusan National University
Correspondence to : 주성준, 부산대학교 심리학과, 전임교원, 부산광역시 금정구 부산대학로 63번길 2, E-mail: sjjoo@pusan.ac.kr

Funding Information ▼

초록

읽기는 인간만이 향유하는 상위 인지 기능 중 하나이다. 시각 시스템은 읽기 학습 동안 발생하는 뇌의 학습과 가소성을 연구하기 위해 적합한 뇌의 영역이다. 특히, 상위 시각 영역은 읽기 학습 이전에는 단어에 대해 선택적으로 반응하지 않지만, 성공적인 읽기 학습을 통해 기존의 다른 기능을 담당하는 영역들 사이에서 단어에 대한 선택적 반응을 하는 단어 영역을 형성한다. 또한 시각 시스템은 읽기를 수행하는 동안 읽기 회로 중 가장 먼저 정보처리를 하는 뇌의 영역이다. 하지만 읽기 처리 과정을 위한 시각 시스템의 역할에 대한 연구는 언어 영역 등 상위 인지 영역의 연구에 비해 주목을 받지 못했다. 본 논문에서는 읽기와 밀접한 관계가 있는 시각 시스템의 기능에 대해 개관하고, 읽기 학습 장애인 난독증 연구 결과를 토대로 읽기 처리 과정에 대한 시각 시스템의 기능에 대해 논할 것이다. 끝으로 임의의 시각자극인 문자 언어와 이에 대응하는 음성 언어를 연합하는 다중 감각 정보처리 과정으로서의 읽기에 대해 논의할 것이다. 본 논문에서 개관하는 선행 연구들은 시각 시스템이 읽기 발달에 매우 중요한 역할을 한다는 것과 시각 시스템의 문제로 인한 난독증 발생의 가능성을 보여주었다. 따라서 읽기에 대한 시각 시스템의 역할을 이해하는 것은 성공적인 읽기 학습을 위한 신경 기제를 규명할 뿐만 아니라 읽기 학습 장애인 난독증 치료를 위한 효과적인 중재 프로그램 개발에 매우 중요한 연구 주제이다.

Abstract

Only humans possess the high-level cognitive function of reading. The visual system is the best platform to study learning and plasticity of the brain during learning to read. For example, the high-level visual areas of the illiterate brain do not selectively respond to words, and only after successful reading acquisition, the visual word form area emerges from the already established areas that selectively respond to various object categories. Furthermore, in the reading circuitry, the visual system is at the front end of reading process. However, compared to research on language and high-level cognitive areas, the role of the visual system in reading has attracted little attention. In this review paper, we summarize the reading-related function of the visual system and discuss how deficits in the visual system relate to developmental dyslexia, learning disability in reading based on dyslexia research. Finally, we discuss reading as multi-sensory processing, in which one should associate arbitrary visual symbols with speech sounds. Previous research has shown the important role of the visual system in reading development and suggested deficits in the visual system might cause dyslexia. Our research suggests that intervention programs for dyslexia as well as research on reading development should include the results from research on the visual system.


Keywords: reading, the visual system, dyslexia, multi-sensory
키워드: 읽기, 시각 시스템, 난독증, 다중 감각

Acknowledgments

이 논문은 부산대학교 기본연구지원사업(2년)에 의해 연구되었음.


References
1. Ahissar, M. (2007). Dyslexia and the anchoring-deficit hypothesis. Trends in Cognitive Sciences, 11(11), 458-465. https://doi.org/10.1016/j.tics.2007.08.015
2. Amitay, S., Ben‐Yehudah, G., Banai, K., & Ahissar, M. (2002). Disabled readers suffer from visual and auditory impairments but not from a specific magnocellular deficit. Brain, 125(10), 2272-2285. https://doi.org/10.1093/brain/awf231
3. Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K., & Wandell, B. A. (2007). Contrast responsivity in MT+ correlates with phonological awareness and reading measures in children. Neuroimage, 37(4), 1396-1406. https://doi.org/10.1016/j.neuroimage.2007.05.060
4. Bertoni, S., Franceschini, S., Ronconi, L., Gori, S., & Facoetti, A. (2019). Is excessive visual crowding causally linked to developmental dyslexia? Neuropsychologia, 130, 107-117. https://doi.org/10.1016/j.neuropsychologia.2019. 04.018
5. Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage, 33(2), 739-748. https://doi.org/10.1016/j.neuroimage.2006.06.053
6. Boets, B., de Beeck, H. P. O., Vandermosten, M., Scott, S. K., Gillebert, C. R., Mantini, D., Bulthe, J., Sunaert, S., Wouters, J., & Ghesquière, P. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 1251-1254. https://doi.org/10.1126/science.1244333
7. Boets, B., Vandermosten, M., Cornelissen, P., Wouters, J., & Ghesquière, P. (2011). Coherent motion sensitivity and reading development in the transition from prereading to reading stage. Child development, 82(3), 854-869. https://doi.org/10.1111/j.1467-8624.2010.01527.x
8. Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104(2), 198-230. https://doi.org/10.1016/j.cognition.2006.05.009
9. Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(5241), 177-178. https://doi.org/10.1038/226177a0
10. Buracas, G. T., Fine, I., & Boynton, G. M. (2005). The relationship between task performance and functional magnetic resonance imaging response. Journal of Neuroscience, 25(12), 3023-3031. https://doi.org/10.1523/JNEUROSCI.4476-04.2005
11. Chung, S. T. (2002). The effect of letter spacing on reading speed in central and peripheral vision. Investigative Ophthalmology & Visual Science, 43(4), 1270-1276.
12. Chung, S. T. (2004). Reading speed benefits from increased vertical word spacing in normal peripheral vision. Optometry and vision science: official publication of the American Academy of Optometry, 81(7), 525. https://doi.org/10.1097/00006324-200407000-0 0014
13. Cicchini, G. M., Marino, C., Mascheretti, S., Perani, D., & Morrone, M. C. (2015). Strong motion deficits in dyslexia associated with DCDC2 gene alteration. Journal of Neuroscience, 35(21), 8059-8064. https://doi.org/10.1523/JNEUROSCI.5077-14.2 015
14. Cornelissen, P., Richardson, A., Mason, A., Fowler, S., & Stein, J. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Research, 35(10), 1483-1494. https://doi.org/10.1016/0042-6989(95)98728-R
15. Cutting, L. E., Materek, A., Cole, C. A., Levine, T. M., & Mahone, E. M. (2009). Effects of fluency, oral language, and executive function on reading comprehension performance. Annals of dyslexia, 59(1), 34-54. https://doi.org/10.1007/s11881-009-0022-0
16. Dehaene, S. (2009). Reading in the brain. New York.
17. Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384-398. https://doi.org/10.1016/j.neuron.2007.10.004
18. Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234-244. https://doi.org/10.1038/nrn3924
19. Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: a proposal. Trends in Cognitive Sciences, 9(7), 335-341. https://doi.org/10.1016/j.tics.2005.05.004
20. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Filho, G. N., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J., & Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359-1364. https://doi.org/10.1126/science.1194140
21. Dehaene-Lambertz, G., Monzalvo, K., & Dehaene, S. (2018). The emergence of the visual word form: Longitudinal evolution of categoryspecific ventral visual areas during reading acquisition. PLoS Biology, 16(3), e2004103. https://doi.org/10.1371/journal.pbio.2004103
22. Demb, J. B., Boynton, G. M., & Heeger, D. J. (1997). Brain activity in visual cortex predicts individual differences in reading performance. Proceedings of the National Academy of Sciences, 94(24), 13363-13366. https://doi.org/10.1073/pnas.94.24.13363
23. De Valois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research, 22(5), 545-559. https://doi.org/10.1016/0042-6989(82)90113-4
24. Doron, A., Manassi, M., Herzog, M. H., & Ahissar, M. (2015). Intact crowding and temporal masking in dyslexia. Journal of Vision, 15(14), 13-13. https://doi.org/10.1167/15.14.13
25. Dowling, J. E., & Boycott, B. B. (1966). Organization of the primate retina: electron microscopy. Proceedings of the Royal Society of London. Series B. Biological Sciences, 166(1002), 80-111. https://doi.org/10.1098/rspb.1966.0086
26. Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382(6586), 66-69. https://doi.org/10.1038/382066a0
27. Frankish, C., & Turner, E. (2007). SIHGT and SUNOD: The role of orthography and phonology in the perception of transposed letter anagrams. Journal of Memory and Language, 56(2), 189-211. https://doi.org/10.1016/j.jml.2006.11.002
28. Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H., & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9(10), 1213-1217. https://doi.org/10.1038/nn1772
29. Glezer, L. S., Jiang, X., & Riesenhuber, M. (2009). Evidence for highly selective neuronal tuning to whole words in the “visual word form area”. Neuron, 62(2), 199-204. https://doi.org/10.1016/j.neuron.2009.03.017
30. Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536-548. https://doi.org/10.1038/nrn3747
31. Gomez, J., Natu, V., Jeska, B., Barnett, M., & Grill-Spector, K. (2018). Development differentially sculpts receptive fields across early and high-level human visual cortex. Nature communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-03166-3
32. Goswami, U. (2003). Why theories about developmental dyslexia require developmental designs. Trends in Cognitive Sciences, 7(12), 534 –540. https://doi.org/10.1016/j.tics.2003.10.003
33. Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 3-10. https://doi.org/10.1016/j.tics.2010.10.001
34. Goswami, U. (2015). Sensory theories of developmental dyslexia: three challenges for research. Nature Reviews Neuroscience, 16(1), 43-54. https://doi.org/10.1038/nrn3836
35. Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. Trends in Cognitive Sciences, 20(3), 171-179. https://doi.org/10.1016/j.tics.2015.12.008
36. Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G., & Dehaene, S. (2015). Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends in Cognitive Sciences, 19(7), 374-382. https://doi.org/10.1016/j.tics.2015.05.006
37. Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Sciences, 5(12), 525-532. https://doi.org/10.1016/S1364-6613(00)01801-5
38. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
39. Heeger, D. J., Huk, A. C., Geisler, W. S., & Albrecht, D. G. (2000). Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nature Neuroscience, 3(7), 631-633. https://doi.org/10.1038/76572
40. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215-243. https://doi.org/10.1113/jphysiol.1968.sp008455
41. Huk, A. C., & Heeger, D. J. (2000). Task-related modulation of visual cortex. Journal of neurophysiology, 83(6), 3525-3536. https://doi.org/10.1152/jn.2000.83.6.3525
42. Joo, S. J., Donnelly, P. M., & Yeatman, J. D. (2017). The causal relationship between dyslexia and motion perception reconsidered. Scientific reports, 7(1), 1-7. https://doi.org/10.1038/s41598-017-04471-5
43. Joo, S. J., Tavabi, K., Caffarra, S., & Yeatman, J. D. (2021). Automaticity in the reading circuitry. Brain and Language, 214, 104906. https://doi.org/10.1016/j.bandl.2020.104906
44. Joo, S. J., White, A. L., Strodtman, D. J., & Yeatman, J. D. (2018). Optimizing text for an individual's visual system: The contribution of visual crowding to reading difficulties. Cortex, 103, 291-301. https://doi.org/10.1016/j.cortex.2018.03.013
45. Kassuba, T., & Kastner, S. (2015). The Reading brain. Frontiers for Young Minds. 3:5. https://doi.org/10.3389/frym.2015.00005
46. Kim, S. O., & Jo, H. S. (2003). The relationship between phonological awareness and reading ability in young children. The Korean Journal of Psychology: General, 22,(1) 19-43.
47. Klein, M., Grainger, J., Wheat, K. L., Millman, R. E., Simpson, M. I., Hansen, P. C., & Cornelissen, P. L. (2015). Early activity in Broca's area during reading reflects fast access to articulatory codes from print. Cerebral Cortex, 25(7), 1715-1723. https://doi.org/10.1093/cercor/bht350
48. Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. Neuroimage, 21(3), 946-953. https://doi.org/10.1016/j.neuroimage.2003.10.021
49. Kubota, E. C., Joo, S. J., Huber, E., & Yeatman, J. D. (2019). Word selectivity in high-level visual cortex and reading skill. Developmental Cognitive Neuroscience, 36, 100593. https://doi.org/10.1016/j.dcn.2018.09.003
50. Lee, K. H., & Oh, K. J. (2010). The relation of auditory temporal processing and early reading ability and phonological awareness. The Korean Journal of Psychology: General, 29(3), 561-581.
51. Lee, C. H., & Taft, M. (2009). Are onsets and codas important in processing letter position? A comparison of TL effects in English and Korean. Journal of Memory and Language, 60(4), 530-542. https://doi.org/10.1016/j.jml.2009.01.002
52. Lee, C. H., & Taft, M. (2011). Subsyllabic structure reflected in letter confusability effects in Korean word recognition. Psychonomic Bulletin & Review, 18(1), 129-134. https://doi.org/10.3758/s13423-010-0028-y
53. Legge, G. E., Mansfield, J. S., & Chung, S. T. (2001). Psychophysics of reading: XX. Linking letter recognition to reading speed in central and peripheral vision. Vision Research, 41(6), 725-743. https://doi.org/10.1016/S0042-6989(00)00295-9
54. Levi, D. M. (2008). Crowding—An essential bottleneck for object recognition: A mini-review. Vision Research, 48(5), 635-654. https://doi.org/10.1016/j.visres.2007.12.009
55. Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences, USA, 88(18), 7943-7947. https://doi.org/10.1073/pnas.88.18.7943
56. Lovegrove, W. J., Bowling, A., Badcock, D., & Blackwood, M. (1980). Specific reading disability: differences in contrast sensitivity as a function of spatial frequency. Science, 210(4468), 439-440. https://doi.org/10.1126/science.7433985
57. Martelli, M., Di Filippo, G., Spinelli, D., & Zoccolotti, P. (2009). Crowding, reading, and developmental dyslexia. Journal of Vision, 9(4), 14-14. https://doi.org/10.1167/9.4.14
58. McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293-299. https://doi.org/10.1016/S1364-6613(03)00134-7
59. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological review, 88(5), 375. https://doi.org/10.1037/0033-295X.88.5.375
60. Nicolson, R. I., & Fawcett, A. J. (1990). Automaticity: A new framework for dyslexia research? Cognition, 35(2), 159-182. https://doi.org/10.1016/0010-0277(90)90013-A
61. Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: the cerebellar deficit hypothesis. Trends in Neurosciences, 24(9), 508-511. https://doi.org/10.1016/S0166-2236(00)01896-8
62. O’Brien, G., & Yeatman, J. D. (2020). Bridging sensory and language theories of dyslexia: Toward a multifactorial model. Developmental Science, e13039. https://doi.org/10.1111/desc.13039
63. Olulade, O. A., Napoliello, E. M., & Eden, G. F. (2013). Abnormal visual motion processing is not a cause of dyslexia. Neuron, 79(1), 180-190. https://doi.org/10.1016/j.neuron.2013.05.002
64. Pattamadilok, C., Chanoine, V., Pallier, C., Anton, J. L., Nazarian, B., Belin, P., & Ziegler, J. C. (2017). Automaticity of phonological and semantic processing during visual word recognition. NeuroImage, 149, 244-255. https://doi.org/10.1016/j.neuroimage.2017.02.003
65. Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8, 830. https://doi.org/10.3389/fnhum.2014.00830
66. Paulesu, E., Démonet, J. F., Fazio, F., McCrory, E., Chanoine, V., Brunswick, N., Cappa, S. F., Cossu, G., Habib, M., Frith, C. D., & Frith, U. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291(5511), 2165-2167. https://doi.org/10.1126/science.1057179
67. Pavlidis, G. T. (1981). Do eye movements hold the key to dyslexia? Neuropsychologia, 19(1), 57-64. https://doi.org/10.1016/0028-3932(81)90044-0
68. Pavlidis, G. T. (1983). The "dyslexia syndrome" and its objective diagnosis by erratic eye movements. In K. Rayner (Ed.), Eye movements in reading: Perceptual and language processes (pp. 441-466). New York: Academic Press. https://doi.org/10.1016/B978-0-12-583680-7.50 030-8
69. Pelli, D. G., Farell, B., & Moore, D. C. (2003). The remarkable inefficiency of word recognition. Nature, 423(6941), 752-756. https://doi.org/10.1038/nature01516
70. Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10), 1129-1135. https://doi.org/10.1038/nn.2187
71. Pelli, D. G., Tillman, K. A., Freeman, J., Su, M., Berger, T. D., & Majaj, N. J. (2007). Crowding and eccentricity determine reading rate. Journal of vision, 7(2), 20-20. https://doi.org/10.1167/7.2.20
72. Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385-413. https://doi.org/10.1016/j.cognition.2006.04.008
73. Pennington, B. F., & Bishop, D. V. (2009). Relations among speech, language, and reading disorders. Annual Review of Psychology, 60, 283-306. https://doi.org/10.1146/annurev.psych.60.11070 7.163548
74. Perea, M., & Gomez, P. (2012a). Increasing interletter spacing facilitates encoding of words. Psychonomic Bulletin & Review, 19(2), 332-338. https://doi.org/10.3758/s13423-011-0214-6
75. Perea, M., & Gomez, P. (2012b). Subtle increases in interletter spacing facilitate the encoding of words during normal reading. PLoS One, 7(10), e47568. https://doi.org/10.1371/journal.pone.0047568
76. Perea, M., & Lupker, S. J. (2004). Can CANISO activate CASINO? Transposed-letter similarity effects with nonadjacent letter positions. Journal of memory and language, 51(2), 231-246. https://doi.org/10.1016/j.jml.2004.05.005
77. Perea, M., Moret-Tatay, C., & Gómez, P. (2011). The effects of interletter spacing in visual-word recognition. Acta Psychologica, 137(3), 345-351. https://doi.org/10.1016/j.actpsy.2011.04.003
78. Perea, M., Panadero, V., Moret-Tatay, C., & Gómez, P. (2012). The effects of inter-letter spacing in visual-word recognition: Evidence with young normal readers and developmental dyslexics. Learning and Instruction, 22(6), 420-430. https://doi.org/10.1016/j.learninstruc.2012.04.001
79. Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The lancet, 379 (9830), 1997-2007. https://doi.org/10.1016/S0140-6736(12)60198-6
80. Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10(1), 15-35. https://doi.org/10.1006/nimg.1999.0441
81. Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62(2), 816-847. https://doi.org/10.1016/j.neuroimage.2012.04.062
82. Ramus, F., Marshall, C. R., Rosen, S., & van der Lely, H. K. J. (2013). Phonological deficits in specific language impairment and developmental dyslexia: towards a multidimensional model. Brain, 136(2), 630-645. https://doi.org/10.1093/brain/aws356
83. Ramus, F., & Szenkovits, G. (2008). What phonological deficit? Quarterly Journal of Experimental Psychology, 61(1), 129-141. https://doi.org/10.1080/17470210701508822
84. Rastle, K., Lally, C., & Lee, C. H. (2019). No flexibility in letter position coding in Korean. Journal of Experimental Psychology: Human Perception and Performance, 45(4), 458-473. https://doi.org/10.1037/xhp0000617
85. Rayner, K. (1985). The role of eye movements in learning to read and reading disability. Remedial and Special Education, 6(6), 53-60. https://doi.org/10.1177/074193258500600609
86. Rees, G., Friston, K., & Koch, C. (2000). A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neuroscience, 3(7), 716-723. https://doi.org/10.1038/76673
87. Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019-1025. https://doi.org/10.1038/14819
88. Runeson, E., Boynton, G. M., & Murray, S. O. (2013). Effects of task and attentional selection on responses in human visual cortex. Journal of Neurophysiology, 109(10), 2606-2617. https://doi.org/10.1152/jn.00318.2012
89. Schoonbaert, S., & Grainger, J. (2004). Letter position coding in printed word perception: Effects of repeated and transposed letters. Language and Cognitive Processes, 19(3), 333-367. https://doi.org/10.1080/01690960344000198
90. Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., Shankweiler, D. P., Liberman, A. M., Skudlarski, P., Fletcher, J. M., Katz, L., Marchione, K. E., Lacadie, C., Gatenby, C., & Gore, J. C. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences, USA, 95(5), 2636-2641. https://doi.org/10.1073/pnas.95.5.2636
91. Simos, P. G., Pugh, K., Mencl, E., Frost, S., Fletcher, J. M., Sarkari, S., & Papanicolaou, A. C. (2009). Temporal course of word recognition in skilled readers: A magnetoencephalography study. Behavioural Brain Research, 197(1), 45-54. https://doi.org/10.1016/j.bbr.2008.07.038
92. Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431(7004), 71-76. https://doi.org/10.1038/nature02865
93. Skottun, B. C. (2000). The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivity. Vision Research, 40(1), 111-127. https://doi.org/10.1016/S0042-6989(99)00170-4
94. Snell, J., & Grainger, J. (2019). Readers are parallel processors. Trends in Cognitive Sciences, 23(7), 537-546. https://doi.org/10.1016/j.tics.2019.04.006
95. Snowling, M. (1998). Dyslexia as a phonological deficit: Evidence and implications. Child Psychology and Psychiatry Review, 3(1), 4-11. https://doi.org/10.1111/1475-3588.00201
96. Snowling, M. J. (2000). Dyslexia (2nd ed.). Oxford, UK: Blackwell.
97. Sperling, A. J., Lu, Z. L., Manis, F. R., & Seidenberg, M. S. (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neuroscience, 8(7), 862-863. https://doi.org/10.1038/nn1474
98. Stein, J., & Walsh, V. (1997). To see but not to read; the magnocellular theory of dyslexia. Trends in Neurosciences, 20(4), 147-152. https://doi.org/10.1016/S0166-2236(96)01005-3
99. Sterling, P. (2004). How retinal circuits optimize the transfer of visual information. In L. M. Chalupa & J. S. Werner (Eds), The visual Neurosciences (Vol. 1, pp. 234-259). Cambridge, MA: MIT Press.
100. Talcott, J. B., Hansen, P. C., Assoku, E. L., & Stein, J. F. (2000). Visual motion sensitivity in dyslexia: evidence for temporal and energy integration deficits. Neuropsychologia, 38(7), 935-943. https://doi.org/10.1016/S0028-3932(00)00020-8
101. Tallal, P., Miller, S., & Fitch, R. H. (1993). Neurobiological basis of speech: a case for the preeminence of temporal processing. Annals of the New York Academy of Sciences, 682, 27-47. https://doi.org/10.1111/j.1749-6632.1993.tb229 57.x
102. Thesen, T., McDonald, C. R., Carlson, C., Doyle, W., Cash, S., Sherfey, J., Felsovalyi, O., Girard, H., Barr, W., Devinsky, O., Kuzniecky, R., & Halgren, E. (2012). Sequential then interactive processing of letters and words in the left fusiform gyrus. Nature Communications, 3(1), 1-8. https://doi.org/10.1038/ncomms2220
103. Tinker, M. A. (1958). Recent studies of eye movements in reading. Psychological bulletin, 55(4), 215. https://doi.org/10.1037/h0041228
104. Torgesen, J. K., Alexander, A. W., Wagner, R. K., Rashotte, C. A., Voeller, K. K., & Conway, T. (2001). Intensive remedial instruction for children with severe reading disabilities: Immediate and long-term outcomes from two instructional approaches. Journal of Learning Disabilities, 34(1), 33-58. https://doi.org/10.1177/002221940103400104
105. Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6(7), 767-773. https://doi.org/10.1038/nn1065
106. Vellutino, F. R. (1979). Dyslexia: Research and theory. Cambridge, MA: MIT Press.
107. Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of child psychology and psychiatry, 45(1), 2-40. https://doi.org/10.1046/j.0021-9630.2003.00305.x
108. van den Boer, M., & Hakvoort, B. E. (2015). Default spacing is the optimal spacing for word reading. Quarterly Journal of Experimental Psychology, 68(4), 697-709. https://doi.org/10.1080/17470218.2014.964272
109. Van Essen, D. C., & Anderson, C. H. (1995). Information processing strategies and pathways in the primate visual system. In Zornetzer et al. (Eds), An Introduction to Neural and Electronic Networks (pp. 45-76). Academic Press.
110. Van Essen, D. C., Newsome, W. T., & Maunsell, J. H. R. (1984). The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research, 24(5), 429-448. https://doi.org/10.1016/0042-6989(84)90041-5
111. Vidyasagar, T. R., & Pammer, K. (2010). Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14(2), 57-63. https://doi.org/10.1016/j.tics.2009.12.003
112. Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron, 55(1), 143-156. https://doi.org/10.1016/j.neuron.2007.05.031
113. Weiner, K. S., & Grill-Spector, K. (2013). Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychological Research, 77(1), 74-97. https://doi.org/10.1007/s00426-011-0392-x
114. Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160-168. https://doi.org/10.1016/j.tics.2011.02.005.
115. Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature neuroscience, 7(7), 701-702. https://doi.org/10.1038/nn1263
116. Yu, D., Cheung, S.-H., Legge, G. E., & Chung, S. T. L. (2007). Effect of letter spacing on visual span and reading speed. Journal of Vision, 7(2), 1-10. https://doi.org/10.1167/7.2.2
117. Zorzi, M., Barbiero, C., Facoetti, A., Lonciari, I., Carrozzi, M., Montico, M., Bravar, L., George, F., Pech-Georgel, C., & Ziegler, J. C. (2012). Extra-large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences, USA, 109(28), 11455-11459. https://doi.org/10.1073/pnas.1205566109